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ELASTIC STRESS DISTRIBUTION I N  A FINI'B3-WIDTH 

ORTHOTROPIC PLATE CONTAINING A CRACK 

By Alexander Mendelson and Samuel W. Spero 

Lewis Research Center 

SUMMARY 

A method is  presented f o r  obtaining d i r e c t l y  t h e  e l a s t i c  s t r e s s  d i s t r ibu -  
t i o n  i n  a th in ,  f in i te -wid th  or thotropic  p l a t e  w i t h  a cen t r a l  crack. The s o h -  
t i on ,  which w a s  obtained by the  use of f i n i t e  Fourier transforms, involves the  
solving of an i n t e g r a l  equation f o r  t he  crack opening; the  s t r e s ses  can then be 
computed by simple quadrature. The so lu t ion  i s  va l id  as long as the  p l a t e  
width i s  at  l e a s t  twice t h e  crack length.  It i s  shown t h a t  t he  s t r e s s  inten- 
s i t y  f ac to r  i s  independent of t h e  orthotropy of t h e  mater ia l .  

INTRODUCTION 

The e l a s t i c  d i s t r ibu t ion  of s t r e s ses  and s t r a i n s  around a crack i n  a f i -  
n i t e  or an i n f i n i t e  medium is a problem basic  t o  t h e  expanding f i e l d  of f r ac -  
t u r e  mechanics. The so lu t ion  f o r  t he  i so t ropic  i n f i n i t e  p l a t e  has been ob- 
ta ined  by severa l  methods and i s  well  known. The so lu t ion  f o r  an i so t ropic  f i -  
n i t e  p l a t e  w i t h  a cen t r a l  crack has only been obtained approximately ( r e f .  1) 
by using Westergaard's semi-inverse so lu t ion  f o r  col inear  cracks ( r e f .  2 ) .  The 
problem of t h e  or thotropic  i n f i n i t e  p l a t e  has been solved both f o r  tension and 
f o r  bending ( r e f .  3).  

The present r epor t  presents  a d i r e c t  so lu t ion  for an or thotropic  f in$ te-  
width p l a t e  w i t h  a cen t r a l  crack under tension. The so lu t ion  is  not exact i n  
t ha t  the  normal s t r e s s  d i s t r ibu t ion  on the f r e e  s ides  of t h e  p l a t e  i s  not zero, 
although the  r e su l t an t  of t h i s  s t r e s s  d i s t r ibu t ion  i s  zero. It i s  shown tha t  
f o r  t h e  case of isotropy t h e  so lu t ion  agrees w i t h  that  given by Westergaard's 
semi-inverse method f o r  col inear  cracks. In  the  l imi t ing  case, as t h e  r a t i o  of 
crack length t o  p l a t e  width approaches zero, t h e  so lu t ion  approaches t h e  one 
f o r  t h e  i n f i n i t e  p la te .  

I n  t h e  f irst  pa r t  of t h i s  repor t  t h e  equations f o r  t h e  s t r e s s  and 
s t r a i n  d i s t r ibu t ions  i n  an or thotropic  p l a t e  a r e  presented together w i t h  a d is -  
cussion of t h e i r  v a l i d i t y  and l imi ta t ions .  In  appendix A, t h i s  so lu t ion  is  
derived i n  d e t a i l ,  i n  a purely formal manner, by using f i n i t e  Fourier t rans-  
forms . 



SOLUTION 

Consider a t h i n  orthotropic p l a t e  2 u n i t s  i n  width with a c e n t r a l  crack of 
length 2a, along t h e  x-axis, loaded with a uniform t e n s i l e  load P per u n i t  

* t 
P P 

Distance along crack, xla 

Figure 1. - Variation of crack opening with distance along 
crack for crack half-lengths from 0.001 to 0.5. 

width at  y equal t o  i n f i n i t y ,  as shown i n  t h e  sketch i n  f igure  1. It i s  
shown i n  appendix A t h a t  a formal solut ion for  t h e  s t r e s s e s  can be obtained i n  
t h e  following form: 

Y 

where Sx, Sy, and S X y  a r e  t h e  s t resses ,  which have been made dimensionless 
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i n  terms of t h e  load, v ( v , O )  i s  the  displacement of t h e  crack ( i . e . ,  crack 
opening) divided by t h e  r a t i o  of t h e  load t o  t h e  e l a s t i c  modulus i n  t h e  y- 
direct ion,  and 

is the  orthotropy parameter. The moduli and t h e  Poisson r a t i o s  i n  t h e  y- and 
x-directions a r e  Ey, Ex, I J y  and cl,. 

The functions I1 and I2 a r e  given by 

cos f i (v  + x)cosh II x - 1 cos f i (v  - x)cosh II 
+ 

~ ( v  + x)  - cosh II q2 EOS I I ( V  - x )  - cosh fi 1 P P 

s i n  f i (v  - x)sinh fi Y 

P 

s i n  I I ( V  + x)sinh II Y 
P -  

.(V + X )  - cosh II q2 FOS f i (v  - x )  - cosh II P 

and t h e  crack opening v(x,O) i s  given by the  solut ion of the i n t e g r a l  equation 

where 

= 4 C sin mna cos mnx 
n2 m2 
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and 

5( 3-t s i n  (a + x ) s i n  z (a - s i n  fia 

2n: s i n  - (a + 7 ) s i n  - (a  - 7)  2 2 
fl Ti K(x,7) = a + 

K s i n  - (a -t x) 

s i n  - (a - x) ( 6 )  
s i n  fix 2 

K 
+ I n  

K 3I 
2 2 2 231 s i n  - ( x  + 7 ) s i n  - ( x  - q )  

The procedure f o r  obtaining the  s t r e s s  d i s t r i b u t i o n  is then t o  first solve 
equation ( 4 )  for t h e  crack opening v(x,O). 
t i o n  of t h e  second kind t h a t  can be solved by any standard method. A numerical 
successive approximation technique i s  used herein.  Although the  kerne l  is s in-  
gular a t  7 = a, t h e  s ingu la r i ty  can r ead i ly  be cancelled out,  and t h e  p r tnc i -  
p a l  value obtained as shown i n  appendix B. The kerne l  is not s ingular  a t  
x = 7. 
equations (5 ) .  
s m a l l  a. The BZm a r e  t h e  Bernoulli numbers 1/6, -1/30, 1/42, and so fo r th .  

This is  a Fredholm i n t e g r a l  equa- 

The funct ion F(x) i s  a known funct ion and can be computed by any of 
The s e r i e s  i n  equation (5c)  a r e  very rap id ly  convergent f o r  

Once the  so lu t ion  f o r  v(x,O) has been obtained, t h e  complete stress f i e l d  
can be computed by simple quadrature with equations (1). 
p la t e  p = 1, equations (1) become, a f t e r  a l imi t ing  process, 

For an i so t ropic  

U 

Equation (7c)  can a l so  be m i t t e n  as 
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I n  equations ( 7 )  and (8) I1 and I2 a r e  evaluated with p set equal t o  1. 

Isotropic  P la te  

Figure 1 shows t h e  solut ion of equation (4) f o r  an i so t ropic  material. 
The r a t i o  of crack opening t o  m a x i "  crack opening as obtained by a successive 

I , ! *  I -- _ _ _ _ _  ~ n f i n i t e  piate 
- - Finite-width olate 

sstergaard's :elution I.- ~ 

I T- 
L I 1 I IT 1 -  
. 3  . 4  

Crack half-length, a 
.6  .7 

approximation solut ion of equa- 
t i o n  (4) has been p lo t ted  against  
t h e  r a t i o  of t h e  dis tance along 
the  crack t o  t h e  crack length. 
This has been done f o r  various ra- 
t i o s  of crack length t o  p l a t e  
width a, and the  r e s u l t s  a l l  f a l l  
on t h e  quadrant of the  c i r c l e  
shown i n  f igure  1. This indicates  
t ha t  t h e  shape of t h e  crack r e -  
mains e l l i p t i c  a t  l e a s t  up t o  
values of a equal t o  0.5. The 
r a t i o  of minor t o  major axes i n -  
creases as a increases,  but t h i s  
increase i s  only 1 2 . 5  percent i n  
going from a = 0 t o  a = 0.5. 

After  the  crack opening 
v(x,O) i s  computed, the s t r e s s e s  
were e a s i l y  calculated from equa- 
t ions  ( 7 ) .  Figure 2 shows the  

Figure 2. - Variation of stress intensity factor with crack length. 

s t r e s s  i n t e n s i t y  fac tor  as obtained i n  t h i s  way. The s t r e s s  i n t e n s i t y  fac tor  
i s  defined by 

k = lim c 4- SY(x,O) 1 ( 9 )  
X-+a 

For an infinite-width p l a t e  t h i s  l i m i t  becomes and is  shown as t h e  dashed 
curve i n  figure 2. The s o l i d  curve of f i g u r e  2 was  obtained f o r  a f i n i t e  p l a t e  
2 u n i t s  wide by using equations ( 7 ) .  

Orthotropic P la te  

Some useful  r e s u l t s  f o r  t h e  orthotropic p l a t e  can be obtained d i r e c t l y  

v(x,O) f o r  an or thotropic  p l a t e  d i f f e r s  
from t h e  r e s u l t s  f o r  t h e  i so t ropic  plate .  
immediately that  t h e  crack opening 
from t h e  crack opening of t h e  i so t ropic  p l a t e  by a numerical factor ;  t h a t  is, 

Examination of equation (4) shows 
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Figure 1 is  therefore  a l s o  v a l i d  for t h e  or thotropic  p l a t e .  
making use of t h i s  r e s u l t  i n  equations (1) show6 t h a t  at  

Furthermore, 
y = 0 

It follows from equations (11) t h a t  

korth = k i so  

t h a t  is ,  t h e  s t r e s s  i n t e n s i t y  f a c t o r  i s  independent of t h e  orthotropy of t he  
mater ia l  ( see  ref.  3) .  

Limitations of Solution 

The desired so lu t ion  f o r  t h e  s t r e s s  d i s t r i b u t i o n  around a crack i n  a 
f ini te-width or thotropic  p l a t e  under simple tension must s a t i s f y  the  following 
equations : 

Equilibrium : 

+ 0 ay ax= 
Compat i b  i 1 it y : 

St re s s - s t r a in  r e l a t ions :  

ex = p2sX - bsY 

ey = s y  - P y S  

The s t r a i n s  appearing i n  equations (14)  and (15) a r e  t h e  a c t u a l  s t r a i n s  divided 
by t h e  r a t i o  of t h e  load P t o  the  modulus i n  t h e  y-direction Ey. 
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Boundary conditions : 

I sy(x,m) = 1 

S x ( x p )  = s XY ( x p )  = 0 

sy(x,o) = 0 O l x < a  

v(x,o) = 0 a < x l l  

sxy(x,o) = SW(l,Y) = Sx(l,y) = 0 

Because of symmetry only one quadrant of t he  p l a t e  is  considered. When t h e  
s t r e s s - s t r a i n  r e l a t i o n s  of equations (15) a r e  subs t i tu ted  i n t o  equation (14) 
and equations (13) are used, t h e  compatibil i ty equation i s  obtained i n  terms of 
s t r e s ses  : 

0 2 

It can be shown by d i r e c t  d i f f e ren t i a t ion  t h a t  t h e  functions Il(x,g,v) and 12(x,t, v) s a t i s f y  t h e  Cauchy-Riemann equations 

. 5 ~  
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Figure 3. - Normal stress distribution on the surface x = 1.0, 
a = 0.5. 

The so lu t ion  given by equations (1) 
then s a t i s f i e s  equations (13) and 
( 17) i den t i ca l ly .  

When t h e  boundary conditions 
given by equations (16) are consid- 
ered, it can be shown t h a t  equa- 
t i o n s  (1) s a t i s f y  a l l  these condi- 
t i o n s  but one. The condition t h a t  
t he  normal stress 
f r e e  surface x = 1 be zero is not 
s a t i s f i e d .  Instead, a normal s t r e s s  
d i s t r ibu t ion  such as t h a t  shown i n  
figure 3 f o r  an i so t ropic  p l a t e  with 
a = 0.5 is  obtained. The r e su l t an t  
stress, however, vanishes, as can be 

Sx(l ,y)  on the  
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shown by integrat ion.  By Saint-Venant's p r inc ip le  it would seem t h a t  t h e  e r r o r  
i n  neglecting the  e f f e c t  of t h i s  normal stress d i s t r i b u t i o n  on the  s t r e s s  f i e l d  
i n  t h e  v i c i n i t y  of t h e  crack should not be large,  i f  t h e  r a t i o  of crack length 
t o  p l a t e  width i s  l e s s  than 1/2. This er ror ,  of course, decreases as a de- 
creases. This is i n  agreement with t h e  conclusion of reference l. 

The existence of t h e  normal s t r e s s  d i s t r i b u t i o n  Sx(l ,y) arises from t h e  
u(1,y) at  t h i s  f a c t  that solut ion (1) implies a constant normal displacement 

surface. This is  shown i n  appendix A i n  t h e  der ivat ion of equations (1). The 
normal s t r e s s  d i s t r i b u t i o n  on t h i s  surface i s  t h e  one required t o  keep t h i s  
boundary s t ra ight .  
as t h e  solut ion f o r  an i n f i n i t e  s e t  of col inear  cracks. For such a s e t ,  t h e  
plane midway between two cracks s u f f e r s  no displacement, s o  the solut ion pre- 
sented s a t i s f i e s  a l l  the  necessary boundary conditions. 

It follows, therefore,  t h a t  solut ion (1) should be t h e  same 

For an i n f i n i t e  s e t  of colinear cracks there  i s  avai lable  a solut ion f o r  
an isotropic  p l a t e  i n  terms of complex poten t ia l s  obtained by Westergaard's 
semi-inverse method ( r e f .  2 ) .  The values obtained f o r  the  s t r e s s  i n t e n s i t y  
fac tor  by using Westergaard's equations are shown by t h e  c i r c l e s  i n  f igure  2. 
The agreement with t h e  present solut ion is excel lent ,  as would be expected. It 
was a l s o  found t h a t  t h e  crack opening as obtained from Westergaard's equations 
s a t i s f i e s  equation ( 4 ) .  Westergaard's solut ion is, of course, not v a l i d  for an 
orthotropic p la te .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, December 10, 1963 
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APPENDIX A 

DERIVATION 

The solut ion equations (1) can be obtained i n  a formal manner by the  
use of f i n i t e  Fourier transforms. When a Fourier s ine  transform i s  performed 
on equation (13a) and Fourier cosine transforms on equations (13%) and (17), 
there  r e s u l t  t h e  following three  equations f o r  t h e  transformed s t r e s ses :  

dSxy, s - msx,c = 0 
d Y  

where some of t h e  conditions of equations (16)  have been used and the  t rans-  
formed s t r e s s e s  a r e  defined by 

Equations (Al) a r e  ordinary d i f f e r e n t i a l  equations f o r  t h e  transforme, s t resses ,  
and t h e i r  solut ions can be wr i t t en  i n  terms of exponentials:  

where Sp(m,y) i s  a pa r t i cu la r  so lu t ion  as ye t  unknown and & and B, are 
constants t o  be determined. The general  so lu t ion  of equations (Al) ac tua l ly  
contains terms with pos i t i ve  exponentials as well ,  but these  m u s t  vanish i f  t h e  
s t r e s s e s  a r e  t o  remain f i n i t e  as ’y approaches i n f i n i t y .  
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Taking t h e  inverse transform (ref. 4) r e s u l t s  i n  

m 

m 

m 

sW(x,y) = 2 s ~ , ~  s i n  mslx 

From equation (A4a) it f o l l o w s  t h a t  

and consequent lythat  Sp is  iden t i ca l ly  zero. It can a l so  be shown t h a t  i n  
order t o  s a t i s f y  t h e  compatibi l i ty  equation (eq. ( 1 7 ) )  and the  condition of 
zero Sx at i n f i n i t y ,  S,,,(O,y) m u s t  vanish. Subs t i tu t ing  equations (A3) i n t o  
equations (A4) and making use of t h e  condition 

r e s u l t  i n  

m 

m = l  

m 

m = l  

"he condition Sxy(x,O) = 0 will be s a t i s f i e d  i f  it i s  assumed t h a t  
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I 

i ; ; & + B , = O  1 

Equations (A6) then become 

I m = l  

It should be noted t h a t  equations (AB) could also have been obtained by 
assuming f o r  t h e  s t r e s ses  Fourier s e r i e s  whose coef f ic ien ts  a r e  functions of y 
and then determining these  functions by subs t i t u t ing  i n t o  t h e  equilibrium and 
t h e  compatibil i ty equations. 

To obtain t h e  displacements, a Fourier cosine transform i s  performed on 
equation (15a) ,  while a Fourier s ine  transform i s  performed on equation (15c). 
After some algebraic  manipulation, making use of equations (A3) and (A7)  and 
then taking t h e  inverse transforms, there  r e s u l t  

m = l  



where equation (15a) has been used t o  determine 
(A9b)  it follows t h a t  t h e  so lu t ion  implies a uniform normal displacement 
a t  t h e  edge of t h e  p l a t e .  

u(1,y) = -b. From equation 

-py 

The coef f ic ien ts  A, can now be determined from t h e  conditions at  y = 0. 
Thus, a t  y = 0, 

m = l  

( A l O a )  

where t h e  condition 
merely Fourier s e r i e s ,  and it consequently follows t h a t  

v(x,O) = 0, a 5 x 5 1, has been used. Equations (A10)  a r e  

( A l l b  ) 

where t h e  conditions 
been used. 

Sy(x,O) = 0, 0 5 x < a, and v(x,O) = 0, a 1. x 5 1, have 

Subs t i tu t ing  equation (Alla)  i n to  equation (&Ob) and equation (Allb) i n t o  
equation ( A l O a )  y ie lds  (after orders of summation and in tegra t ion  a r e  reversed) 

(A12b)  

1 2  



The divergent s e r i e s  appearing i n  equations ( A l 2 )  can be formally summed 
(ref .  5 ) :  

1 ( A 1 3 1  

x 1 - cos 5cv cos 5cC mx cos mv cos mfic = - - 2 (cos 5cv - cos x ( ) 2  
m = l  

2 2 cos mslc cos m5cx = - - 1 l o g b ( c o s  slx - cos 5 c c ) Z l  
45c 

m = l  J 

If equations ( A 1 3 )  a r e  subs t i tu ted  in to  equations (A12) and equation 
(Al2a)  i s  subst i tuted i n t o  equation (AlZb), after t h e  order of in tegra t ion  is  
reversed and one in tegra t ion  i s  performed, t h e  in t eg ra l  equation ( 4 )  i s  ob- 
tained. To obtain the  s t r e s ses  (eqs. (l)), equation (Allb) is  subs t i tu ted  in to  
equations ( A B )  and the  resu l tan t  s e r i e s  summed, as w a s  done previously, a f te r  
the order of summation and in tegra t ion  i s  reversed. The correctness of the  
solut ion can be determined by subs t i tu t ing  back i n t o  the  equilibrium and the  
compatibil i ty equations. 

13 
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APPENDIX B 

EVALUATION OF SINGULAR IIYIXGRAL 

The i n t e g r a l  i n  equation (4) i s  s ingular  at  7 = a s ince  t h e  kernel  is 
unbounded at  t h i s  point.  Since t h e  kerne l  K(x, ) goes t o  i n f i n i t y  as 1 /~  

roo t  s ingu la r i ty  at 7 = a. The p r inc ipa l  value can be calculated a6 follows. 
Equation (4) can be wr i t ten  as 

and t h e  displacement v(7,O) goes t o  zero as c1 3 2, t h e  i n t e g r a l  has a square 

where E i s  a s m a l l  pos i t i ve  number. The f i r s t  i n t e g r a l  is nonsingular and 
can be evaluated without d i f f i c u l t y .  The second in t eg ra l ,  which f o r  conven- 
ience w i l l  be designated by J, can be wr i t t en  as 

where 

s i n  51 - a + x  s i n  51 - 2 a 2 - 

and C is  a constant. The integrand of t h e  first i n t e g r a l  i n  (B2) i s  now 
bounded a t  7 = a, and t h e  second i n t e g r a l  can be r ead i ly  evaluated. Thus, 

Since v(7,O) i s  e l l i p t i c  i n  the  neighborhood of 
equation (B2) can be wr i t t en  with negl ig ib le  e r ro r  as 

a, t h e  f i rs t  i n t e g r a l  i n  

14 
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and t h e  condition of cont inui ty  f o r  v a t  7 = a - E leads t o  

r ! =  v ( a  - E , O )  
v -  

v 2 a E  - E 2 

The equation f o r  J becomes 

(B6) 

where f (x , a )  i s  given by equation (B3)  and C by equation ( B 5 ) .  For the  ca l -  
culat ions performed herein, E was always chosen t o  be a/100. 
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